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STRUCTURE OF INHOMOGENEOUS MEDIA WITHIN THE RANDOM FRACTAL 

MODEL 

R. R. Nigmatullin and N. N. Sutugin UDC 536.7 

The porosity of inhomogeneous media is treated within the random fractal mod- 
el. Analytic expressions are obtained for the size distribution curves of 
bulk mesopores. 

The concepts of a fractal and fractal dimensionality [i] are extremely fruitful in de- 
scribing the geometry of heterogeneous systems, in the study of percolation effects, proper- 
ties of various self-similar objects and structures, generated in hydrodynamics, astrophys- 
ics, electrochemistry, and other disciplines. More detailed information can be found, for 
example, in the reviews [2, 3]. The extension of the concept of a regular fractal and the 
introduction of a set of inhomogeneous objects with distributed values of fractal dimen- 
sionality became possible due to the multifractal approach, a topic discussed in the stud- 
ies [4, 5]. 

Besides this extended class of regular fractals another is possible, which, as far as 
we are concerned, is a more natural method of introducing fractals, where the fractal scale, 
and not its dimensionality, occupies the role of the random fractal. The random fractal 
model (RFM) is proposed on the basis of the new concept of generalized fractal. The distri- 
bution function of various scales is found, and equations are obtained for the porosity of 
an inhomogeneous medium. The equations for two-phase system concentrations are generalized 
and interpreted if the distribution of one of the phases is fractal. A more detailed inter- 
pretation of experiments, related to measurements of porosity and the proof of their frac- 
tal occurrence in sandstones, is given within the RFM [6, 7]. Also analyzed was the size 
distribution function of bulk mesopores with the purpose of searching regions of fractal 
structure with its help. Comparison with experiment makes it possible to establish a number 
of new consequences and indicates internal consistencies of the model. 

Description of Heterogeneous Media by Generalized Fractals. By means of some figure we 
divide the given volume V into original or elementary "volumes" vf(A) = GfA d with character- 
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istic length A, which we define as the maximum scale of self-similarity. This implies that 
for scales q ~ A the figure is assumed to be homogeneous, and its volume is determined by 
the expression V = MGfA d (M is the number of elementary "volumes," and d is the Euclidean 
dimension, acquiring the integral values d = i, 2, 3), and Gf is a geometric shape factor, 
taking into account the geometric shape of the figure selected as original cell. Thus, if 
the figure coincide with a segment of length A, then Gf = 1 (d = i), for an e~quilateral 
triangular shape with edge A Gf = ~ (d = 2), for a tetrahedron Gf = ~2/12, for a 
cube Gf = 1 (d = 3), etc.; for more complicated shapes Gf values can be found in [i]. The 
concept of vf(A) introduced above coincides with the definition of a physical elementary 
volume [8], and provides a lower boundary of the scale, starting with which the continuum 
approximation becomes valid. 

We further partition the characteristic length A into k I parts, and select the scale 
~i = A/kl. We fill the elementary volume by cells whose number equals Pl. Following the 
first partitioning phase, the volume is determined by the expression vl = Gfp1(A/kl) d. For 
d = 3 and Pl = kl 3 we again obtain the original elementary volume, corresponding to its com- 
plete filling. Inhomogeneities occur only when Pla kl 3. At the second phase we carry out 
a similar procedure in each of the Pl cell formed again, selecting the scale N2 = A/kxk2 
and filling each of them by P2 cells. Continuing the partitioning procedure, at the n-th 
phase we obtain the following equation for the volume of the elementary figure: 

v~- -v t (~ , , )= -p~p , ,_~ . . .p~v0(~)=Gf  P'P~-~'"P~ A a. (1 )  

I n t r o d u c i n g  t h e  n o t a t i o n s  P" = HP,,, ~ :: Hk:, e x p r e s s i o n  (1)  can be r e w r i t t e n  in  t h e  form 
i=~ i=~ 

Here ~ = a/k n, D = inp/In k. If Pi = P, ki = k (i = i, 2, ..., n), then expression (2) transforms 
to Eq. (3), determining the volume of a regular fractal [i]: 

vj  (~) = Gj~ a (a/n) ~ -  Gja D ~ - ~  ( 3 ) 

w i t h  ~ = A/k n ,  D = s p /~n  k. Even t h o u g h  e x p r e s s i o n  (2)  c o i n c i d e s  in  shape  w i t h  ( 3 ) ,  t h e  dimen-  
sionality of D and the effective scale ~ have a different meaning than in (3). Expression (2) can 
be interpreted as the volume of the generalized fractal, determining the whole prehistory of par- 
titioning, i.e., of the predominant structural memory. Unlike (2), the volume of the regular 
fractal (3) in all partitioning scales is an exact copy of the preceding partitioning, i.e., 
it possesses no self-similarity and structural memory. Therefore, it is fully justified to 
call the structure constructed by the method described above a generalized fractal, including 
a regular fractal and its combinations as special cases. 

Random Fractal Model. The RFM promoted by us is based on three assumptions. 

A-I. A heterogeneous medium can be described by a family of regular fractals, while 
the scale q is a continuous random quantity, whose variation limits are included in the in- 
terval (i, A). The lower boundary of the interval X determines the minimum possible scale 
(of the order of interatomic distances), starting with which a fractal can be formed. Let 
the probability of encountering scale N on the segment [N, ~ + dn] be equal to W(B)dN; the 
mean volume is then determined by the expression 

A 

< v~ > = [vf(~)w(~)an (4) 
% 

where vf(~) is given by Eq. (3). The second RFM assumption is introduced with the purpose 
of finding the shape of the function W(N). 

A-II. The set considered of regular fractals makes it possible to extract a dominating 
fractal with fractal dimensionality D, while the remaining fractals differ insignificantly 
from the dominant one in their parameters. Let Pi, ki be the parameters of regular fractals, 
and let p and k be the parameters of the dominant fractal, while Pi = P + 6i, ki = k + e i 
(i = i, 2 ..... n) and 8j/p, ei/k << I. In this case one can obtain the following expression 
from Eq. (2): 
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Fig. i. A fractal structure 
consisting of Serpinskii struc- 
tures; X and A have dimension- 
ality of length. 

where D = in p/ink, and 

vI(~l)= Gy~Ia ( A)D+D'~--~G:AD'IIa (A ) D ~1 ~, 

--~x.= D' = -  lnl (-~ ' -  d ~ " / e  k 

n 

i n  �84 Eq. (6) -q~-=n-~q~(qi-~6~, 
i=1 

~i' 6i" 
w(n) is 

2p z + d -2-~-- + ' " ) "  

ei, s = 1, 2) denotes the mean power arithmetic deviation 

It follows from expression (5) that the normalized scale distribution function 

(5) 

(6) 

1 +cz  ~1~" 
W 0q) A~+~_ ~}+~ (7) 

As follows from (6), by its meaning the parameter ~ implies possible structural distortions 
of the dominant fractal. After substituting (7) into (3) and (4) we obtain the following 
expression for <vf>: 

1 + a + d - - D  1 __!1+~ (8)  

Here ~ denotes the ratio X/A. Usually the self-similarity region occupies a large fraction 
of the scales, and therefore W << i. As a result of the integration performed, under cer- 
tain conditions a self-similar structure can be formed again, combining the various elements 
of regular fractals and possessing self-similarity in the average statistical sense. There- 
fore, it is advisable to request that the self-similar nature of the structure be retained. 
This requirement is also the Principle of Statistical Self-Similarity (PSSS) promoted by us, 
which is also the third assumption underlying the RFM. The mathematical expression of the 
PSSS is 

A 

i v: ) = O:A ~ ~-~ = ! v: (~) W (~ d~ (9) 

The results of investigating expression (9) with the purpose of clarifying the region of 
admissible ~ and p values for which the PSSS is satisfied are shown in Table i, where the 
notation D = d + 1 + a was introduced. It is seen from the table that only in the first 
two cases is the self-similar fractal nature of the structure retained. In case 3 the sys- 
tem of scales of order A becomes homogeneous. Due to the occurrence of a factor of type 
in D -I for cases 4 and 5, the PSSS is, strictly speaking, not satisfied, while in case 6 the 
obvious inequality D < d is not satisfied. In case 1 the dimensionality of the regular frac- 
tal D is an invariant quantity, while in case 2 the role of dimensionality is taken by the 
quantity D = d - Ii + ~I, which we define as the dimensionality of the statistical fractal. 
Thus, the PSSS is satisfied only when the admissible ~ values are in the interval -4 < ~ < 
-i, since 0 < D, D < 3. 

An example of a random fractal is shown in Fig. i, where the dominant fractal is selec- 
ted to be a Serpinskii filling. Integration over all possible scale values in the interval 
(X, A) leads to a statistically self-similar structure, having dimensionality D or D, depend- 
ing on whether case 1 or 2 is realized. The replacement of D by D implies that in the orig- 
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TABLE I. Investigation of the Region of Admissible a Values 

Inequality con- Inequality con- 
No. earning ~ earning II =J~/A < v/> 6f 

1-]- a <  0, 

l @ c t @ d - - D < 0  

] - } - a <  0, 

1 -}- o~-1- d - -  D > 0 

1-}-~ > 0, 

1 -+- a -}-- d - -  O > 0 

1 -}- a <  0, 

D = b  = d - - ( 1 - i - a )  

l @ a = 0 ,  

d- -D>O 

1 @ o ~ > 0 ,  

l @ ~ - } - d - - D <  0 

p D--d ">1, p~D--D))I 

[ tD---d)~l,  t tD - -D(  ," 1 

b t~--d C 1, pD'--D< 1 

G:Ad~t d-D 

G:Adp. d-D 

GfAd 

~D--d>~ 1 

~t d-- D ~.< 1 

@/In (u-~) Ad~t d-D 

O/(In ix -~) -~ A d 

Csj--D 
D - - D  

cs _d-  
D--D 

o~ D--d_ 
D--D 

O f  (d - -  D) 

G l (d -- D)-I 

inal setting those fractals are widely represented, whose dimensionality exceeds insignifi- 
cantly that of the dominant fractal (D - D > 0), while in the opposite case (D - D < 0) D is 
an invariant quantity. With account of the definition of D, Eq. (9) can be rewritten in 
the form 

D - - d  Ad 1 - - ~  ~-D 
< v s > = G, ~ Z D  i __~--d ' ( i 0 )  

more convenient for determination of the porosity, as considered below. It is also noted 
that the insignificant deviations of the quantities k i, Pi from k, p are accounted for by 
the parameters Gf and a. The relation N = A/k n shows that the random scale variation can 
occur due to variations in k and n. The PSSS assumes that the random variation in D is pri- 
marily due to the random choice of the number of partition stages n of some elementary vol- 
ume, having initial size A. The insignificant variations in k in terms of ~, ~2, occurring 
in a [Ea. 6)], fix the structural inhomogeneities, assumed to be given. 

Porosity. Comparison with Experimental Data. The porosity is defined as the ratio of 
the total volume of porous space Vp to the total volume of the sample V, bearing in mind the 
absolute porosity [6]. It is assumed that the pores in the medium form some fractal struc- 
ture. To calculate the porosity 

m -- Vp (ii) 
v 

it is necessary to calculate the total volume of pores Vp. According to the discussion 
above, within the assumed RMF we have 

V p = M < v f > .  (12) 

Here <vf> is the mean volume of the statistical fractal, determined by Eq. (8) or (i0), and 
M = V/vf(A), as earlier, is the number of statistical fractals at scales N ~ A, included in 
the whole volume of the body. Substituting Eqs. (12) and (i0) into (ii) leads to an expres- 
sion for the absolute porosity in the form (d = 3): 

m - - 3  l - - ~  ~ - D  
m - -  (13) 

In case i (D < D) we have the following approximation from the exact expression (13) 

3--D o 
ITZ ~ ~ ~L ~  (1 - - -  ~ D - - ~  _}_ . . , ) .  ( 1 4 )  

D - - D  

For case 2 (D > D) 
3--D n~ . . . .  ~_~3-~ (1 __~S--D § ...): (15)  
D- D 
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TABLE 2. Analysis of the Experimental Data of [7] 

D 
Sample --~- ~ ~I3NI nTH3M A ml~T ,*n 

T GS a 965 

TGS ~ 466 

Coconino 

Navajo 

St. Peter's 

2,57 
0,04 

2,68 
~ < 0  
2,78 
1,95 

2,81 
1,268 

2,87 
D<0 

2,57 
2,216 

2,68 
2,33 

2,78 
2,62 

2,81 
2,65 

2,87_ 
2,74 

8.10 -4 

3,3.10 -4 

2,04.1O-! 

4.10 -5 

4110 -5 

5,45 

7,25 

11,75 

16,4 

26,0 

1,170 

0,9428 

1,2645 

1,1232 

0,970 

4,68 

7,645 

9,645 

14,8 

26,9051 

5,3 

7,3 

I1,0 

15,7 

26,4 

Note. The porosity is given in percents. 

Data are given in [7] of two experiments, used by us to verify expressions (13), (14). 
The reason for selecting [7] is that the results in it are those of two independent experi- 
ments, allowing one to reduce the number of free model parameters to a minimum. Firstly, by 
using techniques of electron scanning microscopy it has been established that a space of the 
order of Arizona sand grains (see Table 2) is fractal with a completely determined numerical 
value of the fractal dimensionality. Secondly, the Boyle method was used to measure the 
absolute sample porosity mmeas. Accurately within terms ~~ID - D[, Eqs. (14) and (15) coin- 
cide with the expression for the porosity, used by the authors of [7] for comparison with 
experimental data: 

m = A~ a-o. (16)  

I n  t h i s  c a s e  i t  has  been assumed t h a t  A = 1, and,  c o n s e q u e n t l y ,  t h e  s t a t i s t i c a l  n a t u r e  o f  
t h e  s t r u c t u r e  o f  g r a i n  sands  i s  u n a c c o u n t e d  f o r .  E q u a t i o n  (16)  can be o b t a i n e d  from (3)  
( f o r  n = ~) and d e f i n i t i o n  ( 1 1 ) .  I t  i s  n a t u r a l  t o  compare t h e  d a t a  p r o v i d e d  in  [7] w i t h  t h e  
RFM c o n s e q u e n c e s ,  where ,  as f o l l o w s  from (14)  and ( 1 5 ) ,  t h e  c o e f f i c i e n t  A d i f f e r s  f rom u n i t y :  

3--D 
D - - D  

where t h e  p l u s  s i g n  r e f e r s  t o  Eq. ( 1 4 ) ,  and t h e  minus s i g n  - t o  ( 1 5 ) .  From t h e  e x p e r i m e n t a l  
d a t a  i t  i s  u n c l e a r  what  i s  t h e  d i m e n s i o n a l i t y  measured  by t h e  a u t h o r s  o f  [ 7 ] ,  D or  D, and 
t h e r e f o r e  we s t a r t e d  f rom two c a s e s .  I n  t h e  f i r s t  c a s e  D > D, so t h a t  f rom t h e  known v a l u e  
o f  D = Dmeas and t h e  e x p e r i m e n t a l l y  measured  mmeas and ~meas we c a l c u l a t e d  t h e  c o e f f i c i e n t  
A (column 6 o f  Tab le  2 ) ,  and t h e n  t h e  d i m e n s i o n a l i t y  D was found  by Eq. (14 ) .  I n  t h e  second  
c a s e  D > D; h e r e ,  f rom t h e  measured  v a l u e s  o f  D = Dmeas , mmeas , Dmeas we found t h e  d i m e n s i o n -  
a l i t y  D from Eq. ( 1 5 ) .  The c a l c u l a t i o n  r e s u l t s  a r e  shown in  Tab le  2. I n  t h e  p e n u l t i m a t e  
column we show f o r  compar i son  r e s u l t s  o f  c a l c u l a t i o n s  by Eq. (16)  f o r  A = 1. I n  t h e  l a s t  
column o f  t h e  t a b l e  t h e  p o r o s i t y  was c a l c u l a t e d  by u s i n g  t h e  d a t a  o b t a i n e d  from D and D by 
t he  e x a c t  e q u a t i o n  (13)  w i t h  t h e  p u r p o s e  o f  v e r i f y i n g  t h e  a c c u r a c y  of  t h e  a p p r o x i m a t e  equa-  
t i o n s  (14)  and ( 1 5 ) .  The a n a l y s i s  c a r r i e d  ou t  by us shows t h a t  f o r  a l l  f i v e  samples  t h e  
a u t h o r s  o f  [7] measured  t h e  s t a t i s t i c a l  f r a c t a l  d i m e n s i o n a l i t y ,  c o i n c i d i n g  w i t h  Dmeas. The 
v a l u e s  o f  t h e  c a l c u l a t e d  d i m e n s i o n a l i t y  D a r e  g i v e n  in  t h e  t h i r d  column.  The a s s u m p t i o n  
t h a t  D = Dmeas l e a d s  t o  m e a n i n g l e s s  r e s u l t s .  Thus,  t h e  model s u g g e s t e d  i s  s u b s t a n t i a l l y  
c o r r e c t  in  i n t e r p r e t i n g  t h e  e x p e r i m e n t a l  d a t a .  

I t  must  be n o t e d  t h a t  Eq. (13)  makes i t  p o s s i b l e  t o  deepen and b roaden  t h e  c o n c e p t  o f  
c o n c e n t r a t i o n  in  t w o - p h a s e  s y s t e m s .  The meaning of  t h i s  c o n c e p t  becomes o b v i o u s  i f  t h e  
s t r u c t u r e  o f  one o f  t h e  phase s  i s  formed by c l u s t e r s  w i t h  s c a l e s  in  t h e  i n t e r v a l  (k ,  A),  
and t h e  a r r a n g e m e n t  o f  c l u s t e r s  in  t h e  sample  has  a f r a c t a l l y  s t a t i s t i c a l  n a t u r e .  I n d e e d ,  
i f  t h e  po rous  space  i s  f i l l e d  by a d i f f e r e n t i a l  m a t e r i a l ,  t h e  c o n c e n t r a t i o n  o f  t h i s  phase  
w i t h  r e s p e c t  t o  t h e  t o t a l  volume i s  d e t e r m i n e d  by an e q u a t i o n  s i m i l a r  t o  ( 1 3 ) ,  where t h e  
p a r a m e t e r  ~ d e t e r m i n e s  t h e  a d m i t t e d  r e g i o n  of  f r a e t a l i t y  o f  t h e  s e p a r a t e d  phase .  D e n o t i n g  
by V i = Mi<vf> i the volume of the i-th component, the relative content of the fractal com- 
ponent is determined by the equation 
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function over sizes for betonite 
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ci = G/iA d Mi Di - -d  1__99~ 9~ (17) 
V Di- -Di  l__~Di -d 

Here Di, Di are the fractal dimensionalities of the i-th component. In our opinion, this 
equation is of large practical value in the study of multiphase systems of fractal nature. 

Pore Volume Distribution Function over Sizes. The pore volume distribution function 
over sizes can be constructed by various experimental methods for porous systems. A typi- 
cal curve of this type is shown in Fig. 2. For most materials the extremum of the curve is 
in a region of the order of tens of angstroms. It is natural to assume that the region of 
the curve on the side of large scale values can have a fractal nature. With the purpose 
of verifying this assumption we initially obtained the function dvq/dq following from the 
RFM. Indeed, the probability of encountering a fractal of scale q in the interval [q, q + 
dD] equals dV(q) = vf(n)W(~)dq, where vf(q) and W(~) are determined by Eqs. (3) and (7), 
respectively. Consequently, the pore volume distribution function over sizes is found by 
the expression 

dV(~) _ G:A~,~+o d - - D  N-_D_~=_~.B~_D_I" 
d R ~--D__l 

The constant B cannot be determined from experimental data, but the exponent D - D - i can 
be calculated by representing the measured values in logarithmic coordinates. Thus, for 
the curve selected from [9] and shown in Fig. 2, we obtained D - D = -0.273. The analysis 
of similar curves for a number of other materials, not provided due to lack of space, also 
displays fractal behavior, which is further verification of RFM principles. 

Thus, the RFM suggested and the function W(q) have been verified experimentally. The 
conclusions following from the model make it possible to expand on the nature of porosity, 
particularly on its fractal nature. As follows from Table 2, from the statistical fractal 
dimensionality D one can establish the dimensionality of the regular fractal D, and in 
turn construct the model of a porous system. 

We would like to note the following practical aspects following from the RFM. Equations 
(9), (13), and (17) make it possible to deepen and expand the concepts of concentration and 
porosity, relating the structure of inhomogeneity to its possible fractal manifestation. 
This allows, in turn, more detailed treatment in important practical problems, such as de- 
termination oil-gas-saturation of collectors, explanation of the structure of alloys and 
solid solutions, the study of crystal growth features, etc. Experiments similar to [7] al- 
low more detailed RFM verification as well as further improvement. 

NOTATION 

q, fractal scale; X, A, minimum and maximum self-similarity fractal scales; U, ratio 
of minimum to maximum self-similarity fractal scales; Gf, Gf, geometric shape factors; 
D, D, fractal dimensionalities of the regular and statistical fractals; W(q), scale distri- 
bution function; a, parameter of the scale distribution function; vf(q), volume of a regu- 
lar fractal of given scale q; <vf>, volume of a statistical fractal; V, sample volume; Vp, 
volume of empty space; M, number of volumes vf(A) in volume V; m, porosity; ci, concentra- 
tion of the i-th phase. 
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THERMAL CONDUCTIVITY OF HEPTYL CAPROATE AT HIGH TEMPERATURES 

AND PRESSURES 

R. A. Mustafaev and M. A. Guseinov UDC 536.6 

Measurements have been made on the thermal conductivity of heptyl caproate at 
305-611 K and 0.098-98 MPa. 

Caproates are widely used in making aromatic additives for the food and perfumery indus- 
tries as well as in food chemistry, but no systematic measurements have been made on their 
thermophysical parameters, although values are required to design optimized techniques. 

Very few data have been published on caproate conductivities. Measurements have been 
made at Kazan' Technological Institute [i] on the temperature dependence at atmospheric 
pressure for the first two members of the homologous series. Heptyl caproate has not been 
examined before at all. 

We have made measurements on caproates over wide temperature and pressure ranges [2] 
by dynamic monotone heating. The theory, the measurement methods, and the instruments have 
been described in [3]. Here we report results for heptyl caproate at 305-611 K and 0.098-98 
MPa. 

TABLE i. Measured Conductivities ~.i0 ~ W/m.K for Hetpyl 
Caproate at Various Temperatures and Pressures 

T,K 

305 
31.7 
330 
342 
354 
366 
378 

390 
402 
414 
427 
440 
452 

9,098119,6 

1.38 1.45 
135 143 
132 140 
1.29 137 
126 ] 1.35 
12411.32 
1211 131 
1.1.9 ] 128 
11.6 I 125 
11311.23 
1.10 120 
107 117 
104 115 

P, MPa 

39,2158,6178,4 
1 

152 157 ] 1.62 
149 155 I 160 
146 152 1.57 
144 149 154 
142 148 I 152 
t40 146 151 
1.39 1.45 150 
137 143 148 
133 140 146 
1.31. 138 144 
128 1.36 142 
127 133 139 
124 1.31 137 

T,K  
98 

1.66 464 
164 476 
162 489 
1.60 501 
158 514 
1.56 526 
154 538 
153 550 
1.50 563 
1. 49 575 
147 587 
146 598 
143 611 

0,098 

1.01 
98, 1. 
96,4 
94,6 

19,6 

1.12 
11.0 
1.07 
105 
104 
102 
100 
98,7 
97,8 
95,9 
95,3 
94,7 
94,1. 

P, MPa 

39,2 

121 
1.19 
1.18 
1.15 
11.4 
1.1.2 
11.1 
11.0 
108 
1.07 
106 
1.05 
104 

58,8 78,4 

129 135 
1.27 133 
124 132 
123 130 
122 127 
120 126 
1.19 125 
1.1.8 123 
1.17 1.22 
116 1.22 
11.5 1.21. 
114 1.20 
11.3 I19 

98 

14! 
140 
138 
135 
134 
133 
131. 
130 
1.29 
127 
126 
1.25 
124 
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